Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes.

نویسندگان

  • Claudia Di Napoli
  • Iestyn Pope
  • Francesco Masia
  • Peter Watson
  • Wolfgang Langbein
  • Paola Borri
چکیده

In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200-2000/cm) and in the CH stretch region (2600-3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy

In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which...

متن کامل

Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser.

We have developed a multimodal multiphoton laser-scanning microscope for cell imaging featuring simultaneous acquisition of differential Coherent Antistokes Raman Scattering (D-CARS), two-photon fluorescence (TPF) and second harmonic generation (SHG) using a single 5 fs Ti:Sa broadband (660-970 nm) laser. The spectral and temporal pulse requirements of these modalities were optimized independen...

متن کامل

Quantitative image analysis of broadband CARS microscopy hyperspectral images of polymer blends

We demonstrate that broadband coherent anti-Stokes Raman scattering (CARS) microscopy can be very useful for fast acquisition of quantitative chemical images of multilayer polymer blends. Since a raw CARS signal results from coherent interference of resonant Raman and nonresonant background, its intensity is not linearly proportional to the concentration of molecules of interest, and it is chal...

متن کامل

Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically sp...

متن کامل

Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging.

We demonstrate a method to increase the acquisition speed in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging while retaining the relevant spectral information. The method first determines the important spectral components of a sample from a hyper-spectral image over a small number of spatial points but a large number of spectral points covering the accessible spectral range a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical optics express

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2014